\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x (d+e x)} \, dx\) [441]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 168 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\frac {\sqrt {c} \sqrt {d} \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {d}} \]

[Out]

arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*c^(1/2)*d
^(1/2)/e^(1/2)-arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2))*a^(1/2)*e^(1/2)/d^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {863, 857, 635, 212, 738} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\frac {\sqrt {c} \sqrt {d} \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt {d}} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*Sqrt[d]*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])])/Sqrt[e] - (Sqrt[a]*Sqrt[e]*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/Sqrt[d]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {a e+c d x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = (c d) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+(a e) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = (2 c d) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )-(2 a e) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right ) \\ & = \frac {\sqrt {c} \sqrt {d} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {d}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(476\) vs. \(2(168)=336\).

Time = 1.41 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.83 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=-\frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (-\left (\left (-\sqrt {c} d+\sqrt {c d^2-a e^2}\right ) \sqrt {-2 c d^2+a e^2-2 \sqrt {c} d \sqrt {c d^2-a e^2}} \arctan \left (\frac {\sqrt {-2 c d^2+a e^2-2 \sqrt {c} d \sqrt {c d^2-a e^2}} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {c} \sqrt {d} \sqrt {e} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )\right )+\left (\sqrt {c} d+\sqrt {c d^2-a e^2}\right ) \sqrt {-2 c d^2+a e^2+2 \sqrt {c} d \sqrt {c d^2-a e^2}} \arctan \left (\frac {\sqrt {-2 c d^2+a e^2+2 \sqrt {c} d \sqrt {c d^2-a e^2}} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {c} \sqrt {d} \sqrt {e} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )+2 \sqrt {a} \sqrt {c} d e \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )\right )}{\sqrt {a} \sqrt {d} e^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x*(d + e*x)),x]

[Out]

(-2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(-((-(Sqrt[c]*d) + Sqrt[c*d^2 - a*e^2])*Sqrt[-2*c*d^2 + a*e^2 - 2*Sqrt[c]*
d*Sqrt[c*d^2 - a*e^2]]*ArcTan[(Sqrt[-2*c*d^2 + a*e^2 - 2*Sqrt[c]*d*Sqrt[c*d^2 - a*e^2]]*Sqrt[a*e + c*d*x])/(Sq
rt[a]*Sqrt[c]*Sqrt[d]*Sqrt[e]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + e*x]))]) + (Sqrt[c]*d + Sqrt[c*d^2 - a*e^2])
*Sqrt[-2*c*d^2 + a*e^2 + 2*Sqrt[c]*d*Sqrt[c*d^2 - a*e^2]]*ArcTan[(Sqrt[-2*c*d^2 + a*e^2 + 2*Sqrt[c]*d*Sqrt[c*d
^2 - a*e^2]]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[c]*Sqrt[d]*Sqrt[e]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + e*x]))] +
 2*Sqrt[a]*Sqrt[c]*d*e*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d
+ e*x]))]))/(Sqrt[a]*Sqrt[d]*e^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(307\) vs. \(2(136)=272\).

Time = 0.53 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.83

method result size
default \(\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (e^{2} a +c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}}{d}-\frac {\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (e^{2} a -c \,d^{2}\right ) \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}}}{d}\) \(308\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/d*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+
(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*
e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))-1/d*((c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(
a*e^2-c*d^2)*ln((1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2
))/(c*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.43 (sec) , antiderivative size = 947, normalized size of antiderivative = 5.64 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\left [\frac {1}{2} \, \sqrt {\frac {c d}{e}} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, {\left (2 \, c d e^{2} x + c d^{2} e + a e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {\frac {c d}{e}} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + \frac {1}{2} \, \sqrt {\frac {a e}{d}} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d^{2} e + {\left (c d^{3} + a d e^{2}\right )} x\right )} \sqrt {\frac {a e}{d}} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ), -\sqrt {-\frac {c d}{e}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-\frac {c d}{e}}}{2 \, {\left (c^{2} d^{2} e x^{2} + a c d^{2} e + {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )}}\right ) + \frac {1}{2} \, \sqrt {\frac {a e}{d}} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d^{2} e + {\left (c d^{3} + a d e^{2}\right )} x\right )} \sqrt {\frac {a e}{d}} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ), \sqrt {-\frac {a e}{d}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d e^{2} x^{2} + a^{2} d e^{2} + {\left (a c d^{2} e + a^{2} e^{3}\right )} x\right )}}\right ) + \frac {1}{2} \, \sqrt {\frac {c d}{e}} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, {\left (2 \, c d e^{2} x + c d^{2} e + a e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {\frac {c d}{e}} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ), -\sqrt {-\frac {c d}{e}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-\frac {c d}{e}}}{2 \, {\left (c^{2} d^{2} e x^{2} + a c d^{2} e + {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )}}\right ) + \sqrt {-\frac {a e}{d}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d e^{2} x^{2} + a^{2} d e^{2} + {\left (a c d^{2} e + a^{2} e^{3}\right )} x\right )}}\right )\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*sqrt(c*d/e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 1/2*sqrt(a*e/d)*log(
(8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*
d^2*e + (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2), -sqrt(-c*d/e)*arctan(1/2*sqrt(c*
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^
2*d^3 + a*c*d*e^2)*x)) + 1/2*sqrt(a*e/d)*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e
^3)*x)/x^2), sqrt(-a*e/d)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)
*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) + 1/2*sqrt(c*d/e)*log(8*c^2*d^2*e^2*x^2 +
 c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2
)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x), -sqrt(-c*d/e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*
e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) + sqrt
(-a*e/d)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*
c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x))]

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x \left (d + e x\right )}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m operator + Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x\,\left (d+e\,x\right )} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x*(d + e*x)), x)